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Abstract 
 

Digital images require large amounts of memory, and often we would like to reduce the required memory storage 

and still retain as much of the image quality as possible. We can consider using the singular value decomposition 

(SVD) to manipulate these large sets of data, which will allow us to identify the components of the image which 

contribute the least to overall image quality. In this paper we explore the SVD in general as well as how computing 

the SVD and removing the singular values can reduce the size of stored images. 
 

(

Introduction 

When we consider a digital screen, we rarely think 

about the composition of the images that we are viewing. A 

screen that displays in color actually has a separate saturation 

scale of 0 to 255 for red, green, and blue per pixel. If we 

consider only grayscale, there is a saturation scale of 0 to 

255 per pixel [2]. Thus, images can be interpreted as a 

matrix with pixels represented as individual numerical 

entries. Rows and columns of a matrix hold the position of 

the pixel, and each value in the matrix represent the 

corresponding saturation level. These components can 

ultimately result in a large amount of memory used to 

produce a single image. For instance, if we were to save a 

100 × 100 image in grayscale, there would be 10,000 

different pixel values stored. We would like to address a 

way in which computers can save images without taking up 

such large amounts of memory. 

We consider using the method of Singular Value 

Decomposition to compress the size of the saturation 

matrices, retaining the most important components, to save 

an image using less memory while also retaining the image 

quality. 

 

Singular Value Decomposition 

The process of Singular Value Decomposition 

(SVD) involves breaking down a matrix A into the form 

. This computation allows us to retain the 

important singular values that the image requires while also 

releasing the values that are not as necessary in retaining the 

quality of the image. The singular values of an m × n matrix A 

are the square roots of the eigenvalues of the n × n matrix AT 

A, which are typically organized by magnitude in decreasing 

order [4]. The Singular Value Decomposition is so named due 

to the singular values that are identified and isolated from 

matrix A. 

How to Compute the SVD of a Matrix 

We will rewrite an m × n matrix A in the form 

, where U is an m × m matrix orthonormal 

columns, Σ is an m × n matrix with singular values on the main 

diagonal, and V is an n × n matrix with orthonormal columns. 

V T is the transpose of matrix V, which is found by exchanging 

the rows and the columns of the matrix. 

 

Note: If two column vectors form an orthonormal set, 

it means that the inner product of the columns with each 

other is 0, and the inner product of any column with 

itself is 1. Hence, any matrix B that has orthonormal 

columns has the property BTB = I = BBT, where I is the 

identity matrix. 

 

Before we apply the SVD to image processing, we will first 

demonstrate the method using a small (2×3) matrix A: 

and then follow a step-by-step process to rewrite the matrix A 

in the separated form . 
 
Step 1: Form ATA 

We begin by forming AT A for our given matrix A by 

performing basic matrix multiplication as follows: 
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This process will result in a square matrix of dimension n × n 

with non-negative values, and here we can see that we have 

only non-negative values in our resulting 3 × 3 matrix. 

 

Step 2: Determine the eigenvalues of AT A 

In order to determine the eigenvalues of AT A, we need to 

compute the determinant of the matrix AT A − λI. In general, 

we compute the determinant of a 3 × 3 matrix in the following 

way: 

We could clearly extend this computation to an n × n matrix as 

needed. For our example, we compute the determinant of                   

AT A − λI which is: 

By setting this determinant equal to zero, we solve what is 

called the characteristic equation for λ, and here we see that λ 

= 0, 5, 30. We reorder the eigenvalues in decreasing magnitude, 

so that: λ1 = 30, λ2 = 5, and λ3 = 0. 

 

Step 3: Form the matrix V T 

Once we have determined the eigenvalues, we then compute 

the corresponding eigenvectors and normalize them to produce 

the matrix V. In general, we compute eigenvectors by using the 

matrix AT A − λI and simplify the matrix for each eigenvalue. 

For example, for λ1 = 30 we have: 

 

We then solve the homogeneous equation  to 

obtain the eigenvector , which here results in: 

 

 

We then normalize the eigenvector by dividing by its 

magnitude to form a new vector: 

 

We do this for each eigenvalue to produce a full set of 

eigenvectors that we will use to form the matrix V. For our 

example, 

 

The matrix V T can be easily obtained from V, which results in 

the columns interchanging with the corresponding rows. Thus, 

we have the resulting matrix 

 

Step 4: Form the matrix Σ 

To determine the matrix Σ, we list the nonzero singular values, 

σi , in decreasing magnitude down the main diagonal of Σ, 

where . Then we add any additional rows and 

columns of zeros as needed to retain the original dimension 

of A in Σ. In our example we have three singular values:  

 and 0. We only need to retain the non-zero values, and 

hence we form the matrix 

 

Note that Σ has the same dimension as our original matrix A. 

 

Step 5: Form the matrix U 

We form the matrix U by considering our modified form 

, and isolating each column of U. Because of the 

diagonal nature of Σ, this results in 
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for each of the singular values. We have two singular values 

in our example, and we use them to form the following 

vectors: 

We then combine these column vectors to form the matrix: 

Note that the columns of U are again orthonormal. 

 

Step 6: Rewrite matrix A as  

Finally, we rewrite A using the equation  

 

This decomposition provides a broken-down form of the 

matrix A that has isolated the most important components 

from our original matrix. This returns a modification of our 

original matrix A in which the components are smaller in 

size, thus reducing the memory requirement in storing the 

information. 

 

Applications to Image Processing 

The process of Singular Value Decomposition can 

be used in many applications, including watermarking an 

image, computing weighted least squares, and optimal 

prediction. Here we will consider how this process could be 

used to produce reduced image sizes. We begin by 

understanding that large images are formed by 

correspondingly large matrices, hence requiring a sizable 

amount of memory to store the image. By rewriting the 

image in its broken-down form and removing the smaller 

singular values, we can form smaller matrices which would 

in turn require less memory storage. We would lose some 

refinement with each loss of a singular value, but overall, 

we would retain the overall image features. 

 

Implementation in Grayscale 

In MATLAB, we use and modify existing code from 

Dr. Brady Matthews’ paper “Image Compression using 

Singular Value Decomposition” to load an image, isolate 

the corresponding saturation matrix, and then modify the 

matrix based on its singular values [2]. As an example, we 

use a high-contrast grayscale image of a feather seen in 

Figure 1. 

We consider the individual saturation levels of each 

pixel in the original image as the numerical entries in a matrix. 

We compute the SVD of that matrix and remove the singular 

values (from smallest to largest), converting the modified 

matrices (with removed values) back into a series of images. 

This process of decomposition can reduce the image storage 

size without losing the quality needed to fully represent the 

image. 

In Figure 2 we can see that as more singular values are 

included in the image matrix, the clarity of the image improves. 
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The original image has approximately 680 singular values, but 

we were able to see a close resemblance to the original image 

using only 120 singular values [5]. The amount of storage 

space is not as significant in our example here as it would be in 

practice, because of our emphasis on image clarity. Our current 

process is to compress while still retaining the original number 

of pixels in order to show the details of the loss of image 

quality. In practice, we would see a more significant change in 

storage of an image if we allowed the overall image size (the 

number of pixels) to reduce as we removed the small singular 

values. For example, we can see this relation in photos that 

have been initially taken on a phone and then sent via text, 

often appear more course since they have been compressed 

along the way. 

In Figure 3, we see the amount of error in saturation 

level differences from the original image. We observe the 

positive concavity of the error curve, which indicates that as 

the error decreases, the rate of change of the error loss also 

decreases. This means that the rate of change of the error loss 

is less significant as more singular values are used. Here we see 

that the sharp negative slope that happens prior to 

approximately 20 singular values corresponds with the blurry 

images that were unrecognizable in Figure 2. As we continue 

to reintroduce a greater number of singular values, we can see 

the quality of the image increase, but we can see almost as 

many details with 30 values as we could with 680. 

 

Removing Larger Singular Values 

We now extend this concept to the initial removal of 

larger singular values from an image instead of smaller 

singular values. We intuitively know that this would not be 

useful in retaining image quality but are curious as to the 

extreme nature of the image without the largest singular values. 

Originally the MATLAB code computed the SVD of the 

matrix of the image and removed the singular values (from 

smallest to largest). Then this process would convert the 

modified matrices (with removed values) back into images as 

shown in Figure 2. Through careful manipulation we 

redeveloped the code to build a series of matrices by instead 

starting with only the smallest values. Then these matrices 

were converted into images that have the same number of 

pixels as in the original image. This visualization is shown in 

Figure 4. 

Through careful evaluation we are able to observe the 

same trend from Figure 2 that as more singular values are 

included in the image, the corresponding image clarity 

increases. However, where in the prior example we only 

required a few large singular values to produce a reasonable 

image, here we see that we need a very large number of 

singular values to produce a similar quality image since we are 

only using the smaller singular values first. In Figure 4 we can 

see that there are nearly 625 singular values needed for 

anything visible upon the black landscape. As we reintroduce 
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the larger singular values, the corresponding quality of the 

images drastically increase. 

We again view the error curve which displays a 

numerical representation for the difference between an 

approximated matrix with fewer singular values and our 

original matrix. The jump that occurs from the incorporation of 

a higher number of singular values is represented in Figure 5. 

The negative concavity of this error curve becomes visible as 

the number of singular values are reintroduced. There appears 

to be a point of when there are greater than approximately 550 

singular values the error between the compress and original 

image decreases. This error curve is supported though the 

visual representation within Figure 4, that the image quality 

improves in a significant manner as the larger singular values 

are reincorporated. 

Through this investigation of singular values, we have 

observed the significance of the largest singular value, and we 

now isolate the images using this value alone in Figure 6. This 

figure shows the representation of the largest singular value 

and how it contributes to the overall image quality. We note 

that there is a significant difference when we remove just the 

largest singular value, as it contributed the most to the 

information contained in the original image matrix that 

corresponded to our grayscale image. 

 

 

 

 

Implementation to full color images 

We have been able to observe that the process of SVD 

can be used to compress images to conserve storage space by 

removing the singular values that contribute the least to the 

information contained in the image matrix. Thus far we have 

only demonstrated compression for a grayscale image, but we 

will now expand this process to full color images. For this 

simulation we will choose a full color detailed image that 

celebrates our favorite mathematical holiday, Pi Day, as seen 

in Figure 7. 

 

Recall that each pixel in full color image has color 

saturation representation values of 0 to 255 for red, green, and 

blue. This adds complexity to the image, which requires a 

greater amount of storage space used to save a particular image. 

By showing the representation of each color relative to the full 

color image, we are able to see the amount of contribution each 

color has to each pixel as shown in Figure 8. In order to 

implement the SVD process we will have to first separate the 

full color image into its red, green, and blue layers, as each of 

these three colors has its own matrix of information for the 

image. We will remove the smallest singular values from each 

of the color matrices, and then we will reconstruct the full color 

image using the modified color matrices. 

This decomposition is shown in a simplistic form in 

Figure 8. As we compute the SVD and only reintroduce 

specific singular values, we see the image quality increase 

within Figure 9. With only one singular value, there is very 

little we can recognize from the original image. As singular 

values are reintroduced, we are able to see the image more 

clearly to be a celebration of Pi Day. For this particular image, 

this compression process was able to save a considerable 
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amount of space compared to our grayscale example observed 

in Figure 2. 

The error for full color images is more complex to 

observe than the error corresponding to a grayscale image, due 

to the fact that we separated the color image into three separate 

color saturation matrices. The error curves in Figure 10 

represent the accumulated error when comparing each 

modified color saturation matrix to the corresponding color 

saturation matrix from the original image. We are again able to 

notice a considerable change in clarity from the images 

compressed using a relatively low number of singular values. 

In addition to the obvious reduction of error with the addition 

of more singular values, we also observe a noticeable 

difference between the error curves within each pixel color. 

This original image in Figure 7 has a considerable amount of 

green which contributes largely to the image clarity when 

represented only with the green pixel contribution. In an 

opposing manner, there is not much representation from the 
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blue or red pixel saturation layers, and hence in Figure 10 we 

can see that the error changes more significantly in the green 

saturation layer than with the other two layers. 

We consider our initial challenge of saving storage 

space using the SVD when applied to image processing, and 

we note that for this small full color image we were able to see 

a noticeable difference in storage size. The original image had 

574 singular values for each of the color layers, and when we 

compare this image to the full color image with 100 singular 

values, we use approximately 50% of the original storage 

space. We can see in Figure 11 that they look almost identical 

when compared side to side, but the storage size and 

information matrices are much smaller. Recall that for the sake 

of direct comparison we have retained the original number of 

pixels in these comparisons, instead of naturally reducing the 

number of pixels as we removed each unimportant singular 

value. The corresponding storage size would drastically 

decrease if we allowed this to occur. 

 

Conclusions 

By applying the process of Singular Value 

Decomposition to images by using pixel saturation matrices for 

grayscale or full color images, we can compress the storage 

size of an image even while retaining the number of pixels. We 

have isolated the least important pieces of information that are 

stored in the images and have removed them methodically, 

leaving only the most important components of the images. 

This process of removing the smallest singular values from the 

saturation matrices allows us to retain as much of the image 

quality as possible. In the future we can further explore the 

usefulness when applied to image processing by allowing the 

image size to decrease when we remove the singular values, 

which would garner more extensive results in storage size 

reduction. Beyond this, we can additionally consider applying 

this method to each frame of a video, potentially resulting in a 

significant amount of storage size savings as well. These are 

some of the many ways that the Singular Value Decomposition 

Method can be helpful when applied to large matrices of 

information. 
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